Abstract
Community detection is one of the primary tools to discover useful information that is hidden in complex networks. Some community detection algorithms for bipartite networks have been proposed from various viewpoints. However, the performance of these algorithms deteriorates when the community structure becomes unclear. Enhancing community structure remains a nontrivial task. In this paper, we propose a community detection algorithm, called ECD, that enhances community structure in bipartite networks. In the proposed ECD, the topology of a network is modified by reducing unnecessary edges that are connected to neighboring low-weight communities. Therefore, an ambiguous community structure is converted into a structure that is much clearer than the original structure. The experimental results on both artificial and real-world networks verify the accuracy and reliability of our algorithm. Compared with existing community detection algorithms using state-of-the-art methods, our algorithm has better performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.