Abstract

Community detection methods based on attribute network representation learning are receiving increasing attention. However, few existing works are focused exclusively on unsupervised network representation learning for the task of community detection. They mainly capture information about the topology or attributes of the network, but do not fully utilize clustering-oriented information. In this paper, we present a community detection algorithm based on unsupervised attributed network embedding (CDBNE) to resolve the above issues. To be specific, we propose a framework that learns the representation based on network structure and attribute information and the clustering-oriented representation simultaneously. The framework includes the graph attention auto-encoder module, the modularity maximization module, and the self-training clustering module. Firstly, CDBNE encodes the topology structure and the node attribute with the graph attention mechanism. Secondly, it captures the mesoscopic community structure with modularity maximization. Finally, the self-training clustering module optimizes the representation learning process in a self-supervised manner to obtain high-quality node representation. The performance of CDBNE is verified with experiments on community detection tasks. According to the results on three datasets, CDBNE outperforms the state-of-the-art methods. The implementation of CDBNE is available at https://github.com/xidizxc/CDBNE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.