Abstract

In this paper, we design and analyze MC2G (Matrix Completion with 2 Graphs), an algorithm that performs matrix completion in the presence of social and item similarity graphs. MC2G runs in quasilinear time and is parameter free. It is based on spectral clustering and local refinement steps. The expected number of sampled entries required for MC2G to succeed (i.e., recover the clusters in the graphs and complete the matrix) matches an information-theoretic lower bound up to a constant factor for a wide range of parameters. We show via extensive experiments on both synthetic and real datasets that MC2G outperforms other state-of-the-art matrix completion algorithms that leverage graph side information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.