Abstract

To investigate the characteristics of planktonic fungal communities in Nanchang lakes and the mechanism of environmental stress on planktonic fungal communities, surface water samples were collected from seven major urban lakes evenly distributed in different county-level districts of Nanchang in the dry (February and December), normal (April and October), and wet (June and August) seasons, respectively. The environmental stressors such as WT, DO, NH4+-N, and NO3--N were measured; the characteristics of planktonic fungal communities were studied using high-throughput sequencing; the symbiotic patterns of planktonic fungal communities were elucidated using network analysis and other methods; and the environmental stressors affecting the structure and symbiotic patterns of planktonic fungal communities were revealed. The results showed that ① the planktonic fungal community composition in lakes of Nanchang varied significantly among seasons but not significantly among the lakes. WT, DO, pH, and NH4+-N were the significant environmental stressors affecting the planktonic fungal community composition. ② The dominant phyla of the planktonic fungal community were Chytridiomycota (9.55%-33.14%), Basidiomycota (0.48%-4.25%), and Ascomycota (1.29%-3.19%), and the sizes of the dominant phyla were in the following order:wet season>normal season>dry season. The relative abundance of Chytridiomycota was significantly higher in the wet season than that in the normal season and the dry season, the relative abundance of Basidiomycota was significantly lower in the dry season than that in the normal and wet seasons, and the difference in Ascomycota among seasons was not significant. ③ The stability size of the planktonic fungal community symbiosis network in lakes of Nanchang was in the following order:wet season>normal season>dry season. WT was the best environmental stressor affecting the planktonic fungal community symbiosis pattern. The study can provide theoretical basis for the comprehensive evaluation and management study of the lake and provide guidance for protecting the lake ecosystem in the middle and lower reaches of the Yangtze River.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call