Abstract

BackgroundMulti-drug resistance (MDR) in Gram-negative organisms is an alarming problem in the world. MDR and extensively-drug resistance (XDR) is in increasing trend due to the production of different types of beta (β)-lactamases. Thus the aim of this study was to document the incidence of MDR and XDR in clinical isolates of Escherichia coli and also to find out the enzymatic mechanisms of β-lactam antibiotics resistance.MethodsTwo hundred clinical isolates of Escherichia coli (E. coli) identified by standard laboratory methods were studied. Antibiotic susceptibility profile was performed for all the isolates and the suspected isolates were phenotypically tested for the production of extended spectrum β-lactamase (ESBL), metallo β-lactamase (MBL) and AmpC β-lactamase (AmpC) by recommended methods.ResultsAround three-fourth (78%) of the total isolates were multi-drug resistant. ESBL, MBL and AmpC production was found in 24%, 15% and 9% of isolates respectively. Amikacin, chloramphenicol and colistin were found to be the most effective antibiotics.ConclusionsHigh percentage of MDR was observed. β-lactamase mediated resistance was also high. Thus, regular surveillance of drug resistance due to β-lactamases production and infection control policy are of utmost importance to minimize the spread of resistant strains.

Highlights

  • Multi-drug resistance (MDR) in Gram-negative organisms is an alarming problem in the world

  • Resistance pattern of E. coli All of the E. coli isolates tested exhibited resistance to amoxicillin-clavulanic acid and 77 % of them remained resistant to ciprofloxacin whereas all the isolates were susceptible to colistin and few isolates (7%) were resistant to imipenem (Table 1)

  • All MDR isolates were resistant to amoxicillin-clavulanic acid and 91% isolates were resistant to ciprofloxacin whereas amikacin, imipenem and colistin were found as the most effective antibiotics for the MDR isolates

Read more

Summary

Introduction

Multi-drug resistance (MDR) in Gram-negative organisms is an alarming problem in the world. Resistance to broad spectrum β-lactams, mediated by extended spectrum β-lactamases (ESBL), metallo β-lactamases (MBL) and AmpC β-lactamases (AmpC) enzymes is an increasing problem worldwide [1]. Presence of the latter two enzymes in clinical infections can result in treatment failure if one of the second- or third-generation cephalosporin is used. ESBLs are the enzymes produced by Gram-negative bacilli that have the ability to ESBLs were first identified in 1983 Since the time, they have been found worldwide in a number of organisms, including Klebsiella pneumoniae (K. pneumoniae), Klebsiella oxytoca, Escherichia coli (E. coli), Proteus mirabilis, Enterobacter cloacae, Morganella morganii, Serratia marcescens, Shigella dysenteriae, Pseudomonas aeruginosa, Burkholderia cepacia, Capnocytophaga ochracea, Citrobacter species, and Salmonella species [4,5,6,7,8,9,10]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.