Abstract

Abundance and structure of the communities of neutrophilic lithotrophic iron-oxidizing bacteria (FeOB) inhabiting four low-mineralized ferruginous springs of the Marcial Waters Resort (South Karelia, Russia) and the brackish chalybeate spring of the Staraya Russa Resort (Novgorod region, Russia), were investigated, as well as the physicochemical conditions of these environments. In fresh iron-containing precipitates collected near the spring outlets and within the spring-discharge areas, as well as along the spring watercourses, the numbers of unicellular FeOB enumerated on nutrient media ranged from 105 to 107 cells per 1 mL of sediments irrespective of the initial Fe(II) concentration (11–126 mg L−1). In the spring waters and along the spring watercourses inhabited by iron-oxidizing bacteria, the concentration of dissolved oxygen did not exceed 0.05–0.1 mg L−1. Unicellular FeOB were predominant in three springs, while in the springs with relatively low Fe(II) concentrations (11–22 mg L−1), various morphological forms of Gallionella and uncultured forms of the iron-oxidizing bacterium Toxothrix trichogenes prevailed. In the model experiments with the water samples collected in the ferruginous springs and bogs under controlled conditions, the fractionation of stable iron isotopes and the rate of iron oxidation were found to depend on the oxygen regime and, to a lesser extent, on the initial Fe(II) concentration. The maximum enrichment of the iron oxides formed during the simulation experiments with the light 54Fe isotope was observed during bacterial oxidation under microaerobic conditions at O2 concentrations of 0.1–0.3 mg L−1 and in the cultures of iron-oxidizing bacteria. During the abiogenic oxidation of Fe(II), the extent of stable isotope fractionation was 1.5–2 times lower. Enrichment of Fe(III) oxides with the light 54Fe isotope (3- to 5-fold) was considerably lower at high rates of both the biogenic and abiogenic processes of iron oxidation under aerobic conditions; however, it was more intense during the bacterial processes. Comparison of the rates of enrichment of Fe(III) oxides with the light isotope during the model experiments with pure and enrichment cultures of iron-oxidizing bacteria from the sediments of ferruginous springs and bogs revealed that the biogenic factor plays a key role in the oxidation processes of the iron cycle, as well as in the differentiation of the composition of stable iron isotopes in the studied ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call