Abstract

Virtual reality (VR) over wireless is emerging as an important use case of 5G networks. Immersive VR experience requires the delivery of huge data at ultra-low latency, thus demanding ultra-high transmission rate. This challenge can be largely addressed by the recent network architecture known as mobile edge computing (MEC), which enables caching and computing capabilities at the edge of wireless networks. This paper presents a novel MEC-based mobile VR delivery framework that is able to cache parts of the field of views (FOVs) in advance and run certain post-processing procedures at the mobile VR device. To optimize resource allocation at the mobile VR device, we formulate a joint caching and computing decision problem to minimize the average required transmission rate while meeting a given latency constraint. When FOVs are homogeneous, we obtain a closed-form expression for the optimal joint policy which reveals interesting communications-caching-computing tradeoffs. When FOVs are heterogeneous, we obtain a local optima of the problem by transforming it into a linearly constrained indefinite quadratic problem then applying concave convex procedure. Numerical results demonstrate great promises of the proposed mobile VR delivery framework in saving communication bandwidth while meeting low latency requirement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.