Abstract

In this work, we propose a two-stage multi-agent deep deterministic policy gradient (TS-MADDPG) algorithm for communication-free, multi-agent reinforcement learning (MARL) under partial states and observations. In the first stage, we train prototype actor-critic networks using only partial states at actors. In the second stage, we incorporate partial observations resulting from prototype actions as side information at actors to enhance actor-critic training. This side information is useful to infer the unobserved states and hence, can help reduce the performance gap between a network with fully observable states and a partially observable one. Using a case study of building energy control in the power distribution network, we successfully demonstrate that the proposed TS-MADDPG can greatly improve the performance of single-stage MADDPG algorithms that use partial states only. This is the first work that utilizes partial local voltage measurements as observations to improve the MARL performance for a distributed power network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call