Abstract

In distributed memory multicomputers, local memory accesses are much faster than those involving interprocessor communication. For the sake of reducing or even eliminating the interprocessor communication, the array elements in programs must be carefully distributed to local memory of processors for parallel execution. We devote our efforts to the techniques of allocating array elements of nested loops onto multicomputers in a communication-free fashion for parallelizing compilers. We first analyze the pattern of references among all arrays referenced by a nested loop, and then partition the iteration space into blocks without interblock communication. The arrays can be partitioned under the communication-free criteria with nonduplicate or duplicate data. Finally, a heuristic method for mapping the partitioned array elements and iterations onto the fixed-size multicomputers under the consideration of load balancing is proposed. Based on these methods, the nested loops can execute without any communication overhead on the distributed memory multicomputers. Moreover, the performance of the strategies with nonduplicate and duplicate data for matrix multiplication is studied.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.