Abstract
The convergence of the Internet of Things (IoT) and data analytics has great potential to accelerate knowledge discovery, while the traditional approach of centralized data collection then processing is becoming infeasible in many applications due to efficiency and privacy concerns. Federated learning (FL) has emerged as a new paradigm that enables model learning across distributed IoT devices without sharing raw data. However, previous works on FL are either relying on a single central server or fully decentralized. In this article, we propose a semihierarchical federated analytics framework combining the advantages of the above architectures. The proposed framework leverages multiple edge servers for aggregating updates from IoT devices and fusing learned model weights without the need of cloud or a central server. Besides, we develop a new local client update rule to further improve the communication efficiency by reducing the communication rounds between IoT devices and edge servers. We analyze the convergence properties of the presenting approach and investigate its characteristics considering the effects of varying parameters, unreliable links, and packet loss. The experimental results demonstrate the effectiveness of our proposed methodology in providing communication-efficient, robust, and fault-tolerant data analytics to IoT networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.