Abstract

Antarctica, being the coldest, driest, and windiest continent on Earth, represents the most extreme environment in which a living organism can survive. Under constant exposure to harsh environmental threats, terrestrial Antarctica remains home to a great diversity of microorganisms, indicating that the soil bacteria must have adapted a range of survival strategies that require cell-to-cell communication. Survival strategies include secondary metabolite production, biofilm formation, bioluminescence, symbiosis, conjugation, sporulation, and motility, all of which are often regulated by quorum sensing (QS), a type of bacterial communication. Until now, such mechanisms have not been explored in terrestrial Antarctica. In this study, LuxI/LuxR-based quorum sensing (QS) activity was delineated in soil bacterial isolates recovered from Adams Flat, in the Vestfold Hills region of East Antarctica. Interestingly, we identified the production of potential homoserine lactones (HSLs) with chain lengths ranging from medium to long in 19 bacterial species using three biosensors, namely, Agrobacterium tumefaciens NTL4, Chromobacterium violaceum CV026, and Escherichia coli MT102, in conjunction with thin-layer chromatography (TLC). The majority of detectable HSLs were from Gram-positive species not previously known to produce HSLs. This discovery further expands our understanding of the microbial community capable of this type of communication, as well as provides insights into physiological adaptations of microorganisms that allow them to survive in the harsh Antarctic environment.IMPORTANCE Quorum sensing, a type of bacterial communication, is widely known to regulate many processes, including those that confer a survival advantage. However, little is known about communication by bacteria residing within Antarctic soils. Employing a combination of bacterial biosensors, analytical techniques, and genome mining, we found a variety of Antarctic soil bacteria speaking a common language, via LuxI/LuxR-based quorum sensing, thus potentially supporting survival in a mixed microbial community. This study reports potential quorum sensing activity in Antarctic soils and has provided a platform for studying physiological adaptations of microorganisms that allow them to survive in the harsh Antarctic environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.