Abstract

A full dimensional state-to-state quantum dynamics study is carried out for the prototypical complex-formation OH + CO → H + CO(2) reaction in the ground rovibrational initial state on the Lakin-Troya-Schatz-Harding potential energy surface by using the reactant-product decoupling method. With three heavy atoms and deep wells on the reaction path, the reaction represents a huge challenge for accurate quantum dynamics study. This state-to-state calculation is the first such a study on a four-atom reaction other than the H(2) + OH ↔ H(2)O + H and its isotope analogies. The product CO(2) vibrational and rotational state distributions, and product energy partitioning information are presented for ground initial rovibrational state with the total angular momentum J = 0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.