Abstract
Two-dimensional hard disks are a fundamentally important many-body model system in classical statistical mechanics. Despite their significance, a comprehensive experimental data set for two-dimensional single component and binary hard disks is lacking. Here, we present a direct comparison between the full set of radial distribution functions and the contact values of a two-dimensional binary colloidal hard sphere model system and those calculated using fundamental measure theory. We find excellent quantitative agreement between our experimental data and theoretical predictions for both single component and binary hard disk systems. Our results provide a unique and fully quantitative mapping between experiments and theory, which is crucial in establishing the fundamental link between structure and dynamics in simple liquids and glass forming systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.