Abstract

Photovoltaics (PV) is a cost-competitive and scalable technology for electricity generation that plays a crucial role to accelerate the European energy transition and achieve carbon neutrality. Large-scale installation of rooftop PV, as well as innovative PV applications such as floating PV coupled with hydropower and bifacial PV along roads and railways, offer multi-benefits, not least in reducing competition for land. In this study, we present a geospatial approach to assess the pan-European technical potential of these three applications, using publicly available datasets. The findings reveal that the PV total installed capacity could exceed 1 TWp, which is far larger than the total PV capacity for 2030 in the EU Solar Energy Strategy (720 GWp) and would be a significant contribution to the several TWs needed for the overall transition to net-zero by 2050. The evidence presented is a useful starting point for policy-setting at national and regional level, as well as for research and detailed analyses of location specific solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.