Abstract

In this work, we use molecular dynamics simulations with a polarizable force field, namely, the modified AH/BK3 model [J. Kolafa, J. Chem. Phys. 145, 204509 (2016)], in combination with the forward flux sampling technique, to calculate the rates of homogeneous nucleation of NaCl from supersaturated aqueous solutions at 298 K and 1 bar. A non-polarizable model that reproduces the experimental equilibrium solubility {AH/TIP4P-2005 of Benavides et al. [J. Chem. Phys. 147, 104501 (2017)]} is also used for comparison. Nucleation rates calculated from the polarizable force field are found to be in good agreement with experimental measurements, while the non-polarizable model severely underestimates the nucleation rates. These results, in combination with our earlier study of a different non-polarizable force field [H. Jiang et al., J. Chem. Phys. 148, 044505 (2018)], lead to the conclusion that nucleation rates are sensitive to the details of force fields, and a good representation of nucleation rates may not be feasible using available non-polarizable force fields, even if these reproduce the equilibrium salt solubility. Inclusion of polarization could be important for an accurate prediction of nucleation rates in salt solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call