Abstract

An integrated high performance, highly reliable, scalable, and secure communications network is critical for the successful deployment and operation of next-generation electricity generation, transmission, and distribution systems — known as “smart grids.” Much of the work done to date to define a smart grid communications architecture has focused on high-level service requirements with little attention to implementation challenges. This paper investigates in detail a smart grid communication network architecture that supports today's grid applications (such as supervisory control and data acquisition [SCADA], mobile workforce communication, and other voice and data communication) and new applications necessitated by the introduction of smart metering and home area networking, support of demand response applications, and incorporation of renewable energy sources in the grid. We present design principles for satisfying the diverse quality of service (QoS) and reliability requirements of smart grids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.