Abstract

Inverse methods of statistical mechanics have facilitated the discovery of pair potentials that stabilize a wide variety of targeted lattices at zero temperature. However, such methods are complicated by the need to compare, within the optimization framework, the energy of the desired lattice to all possibly relevant competing structures, which are not generally known in advance. Furthermore, ground-state stability does not guarantee that the target will readily assemble from the fluid upon cooling from higher temperature. Here, we introduce a molecular dynamics simulation-based, optimization design strategy that iteratively and systematically refines the pair interaction according to the fluid and crystalline structural ensembles encountered during the assembly process. We successfully apply this probabilistic, machine-learning approach to the design of repulsive, isotropic pair potentials that assemble into honeycomb, kagome, square, rectangular, truncated square, and truncated hexagonal lattices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.