Abstract

The H6+ cation was generated in a pulsed-discharge supersonic expansion of hydrogen and mass-selected in a time-of-flight spectrometer. Its vibrational spectrum was measured in the region of 2050-4550 cm-1 using infrared photodissociation with a tunable OPO/OPA laser system. The H6+ photodissociates, producing H5+, H4+, and H3+ fragments; each of these fragment channels has a different spectrum. Computational studies identify two low-lying isomers described in previous work, whose energies were evaluated at the CCSD(T)/cc-pVTZ//MP2/cc-pVTZ level of theory. A D2d species having an H2+ cation bridging between two perpendicular H2 molecules is the global minimum structure. A Cs structure with an H3+ core ion bound to both H2 and an H atom lies 4.0 kcal mol-1 higher in energy. Anharmonic vibrational spectra were computed for each of these isomers with second-order vibrational perturbation theory (VPT2) in combination with density functional theory at the B2PLYP/cc-pVTZ level. The comparison between experimental and predicted spectra confirms the presence of both the D2d and Cs structures and explains the spectra in different fragmentation channels. Although we find reasonable agreement between the experiment and the spectra predicted by VPT2 computations, a more sophisticated computational approach is needed to better understand this complex system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.