Abstract
ABSTRACTIn a recent research, the quasi-likelihood estimation methodology was developed to estimate the regression effects in the Generalized BINMA(1) (GBINMA(1)) process. The method provides consistent parameter estimates but, in the intermediate computations, moment estimating equations were used to estimate the serial- and cross-correlation parameters. This procedure may not result optimal parameter estimates, in particular, for the regression effects. This paper provides an alternative simpler GBINMA(1) process based on multivariate thinning properties where the main effects are estimated via a robust generalized quasi-likelihood (GQL) estimation approach. The two techniques are compared through some simulation experiments. A real-life data application is studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.