Abstract

A fully coupled global nine-dimensional potential energy surface for the dissociative chemisorption of CO2 on Ni(100) is constructed from ∼18,000 density functional points. It reveals a complex reaction pathway dominated by two near iso-energetic transition states. The dissociation probabilities obtained by quasi-classical trajectories on the potential energy surface reproduced experimental trends, and indicate that vibrational excitations of CO2 significantly promote the dissociation. Using the sudden vector projection model, the behavior of the reactivity is rationalized by couplings with the reaction coordinate at each transition state. These results offer plausible rationalization for the observed enhancement of CO2 dissociation in non-thermal plasmas by metal surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.