Abstract

In this paper, we present an optimal packet size solution that optimizes the communication energy consumption in the heterogeneous wireless networks. More specifically, we consider a heterogeneous network system composed of a body sensor network (BSN) and a WiFi network. Then, based on the analysis of data communication in the BSN and WiFi (BSN-WiFi) network, we formulate a communication energy consumption optimization model with the constraints of throughput and time delay. Mathematically, we convert this model into a geometric programming problem, which is then numerically solved. The optimal solution can be applied in both BSN and WiFi network to dynamically select packet payload sizes according to real-time packet delivery ratios (PDRs). Since PDRs are time-varying, we tabulate a packet payload size lookup table for online packet size selection using PDRs as indices. Finally, we collect PDRs from a deployed BSN-WiFi network and evaluate the energy optimization model. The performance evaluation results show that, in comparison with fixed packet size solutions, our optimal solutions achieve up to 70 percent energy savings in a BSN(TDMA)-WiFi network and 68 percent in a BSN(CSMA)-WiFi network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.