Abstract

Artificial intelligence (AI) has achieved remarkable breakthroughs in a wide range of fields, ranging from speech processing, image classification to drug discovery. This is driven by the explosive growth of data, advances in machine learning (especially deep learning), and the easy access to powerful computing resources. Particularly, the wide scale deployment of edge devices (e.g., IoT devices) generates an unprecedented scale of data, which provides the opportunity to derive accurate models and develop various intelligent applications at the network edge. However, such enormous data cannot all be sent to the cloud for processing, due to the varying channel quality, traffic congestion and/or privacy concerns, and the enormous energy consumption. By pushing inference and training processes of AI models to edge nodes, edge AI has emerged as a promising alternative. AI at the edge requires close cooperation among edge devices , such as smart phones and smart vehicles, and edge servers at the wireless access points and base stations, which however result in heavy communication overheads. In this paper, we present a comprehensive survey of the recent developments in various techniques for overcoming these communication challenges. Specifically, we first identify key communication challenges in edge AI systems. We then introduce communication-efficient techniques, from both algorithmic and system perspectives for training and inference tasks at the network edge. Potential future research directions are also highlighted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.