Abstract

This work focuses on distributed optimization for multi-task learning with matrix sparsity regularization. We propose a fast communication-efficient distributed optimization method for solving the problem. With the proposed method, training data of different tasks can be geo-distributed over different local machines, and the tasks can be learned jointly through the matrix sparsity regularization without a need to centralize the data. We theoretically prove that our proposed method enjoys a fast convergence rate for different types of loss functions in the distributed environment. To further reduce the communication cost during the distributed optimization procedure, we propose a data screening approach to safely filter inactive features or variables. Finally, we conduct extensive experiments on both synthetic and real-world datasets to demonstrate the effectiveness of our proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.