Abstract
Mining for associations between items in large transactional databases is a central problem in the field of knowledge discovery. When the database is partitioned among several share-nothing machines, the problem can be addressed using distributed data mining algorithms. One such algorithm, called CD, was proposed by Agrawal and Shafer and was later enhanced by the FDM algorithm of Cheung, Han et al. The main problem with these algorithms is that they do not scale well with the number of partitions. They are thus impractical for use in modern distributed environments such as peer-to-peer systems, in which hundreds or thousands of computers may interact.In this paper we present a set of new algorithms that solve the Distributed Association Rule Mining problem using far less communication. In addition to being very efficient, the new algorithms are also extremely robust. Unlike existing algorithms, they continue to be efficient even when the data is skewed or the partition sizes are imbalanced. We present both experimental and theoretical results concerning the behavior of these algorithms and explain how they can be implemented in different settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.