Abstract
We investigate top-m arm identification, a basic problem in bandit theory, in a multi-agent learning model in which agents collaborate to learn an objective function. We are interested in designing collaborative learning algorithms that achieve maximum speedup (compared to single-agent learning algorithms) using minimum communication cost, as communication is frequently the bottleneck in multi-agent learning. We give both algorithmic and impossibility results, and conduct a set of experiments to demonstrate the effectiveness of our algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.