Abstract
Numerical solution of partial differential equations on parallel computers using domain decomposition usually requires synchronization and communication among the processors. These operations often have a significant overhead in terms of time and energy. In this paper, we propose communication-efficient parallel algorithms for solving partial differential equations that alleviate this overhead. First, we describe an asynchronous algorithm that removes the requirement of synchronization and checks for termination in a distributed fashion while maintaining the provision to restart iterations if necessary. Then, we build on the asynchronous algorithm to propose an event-triggered communication algorithm that communicates the boundary values to neighboring processors only at certain iterations, thereby reducing the number of messages while maintaining similar accuracy of solution. We demonstrate our algorithms on a successive over-relaxation solver for the pressure Poisson equation arising from variable density incompressible multiphase flows in 3-D and show that our algorithms improve time and energy efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.