Abstract

Latent Dirichlet allocation (LDA) is a popular topic modeling method which has found many multimedia applications, such as motion analysis and image categorization. Communication cost is one of the main bottlenecks for large-scale parallel learning of LDA. To reduce communication cost, we introduce Zipf's law and propose novel parallel LDA algorithms that communicate only partial important information at each learning iteration. The proposed algorithms are much more efficient than the current state-of-the-art algorithms in both communication and computation costs. Extensive experiments on large-scale data sets demonstrate that our algorithms can greatly reduce communication and computation costs to achieve a better scalability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.