Abstract
In large-scale distributed machine learning (DML), the synchronization efficiency of the distributed algorithm becomes a critical factor that affects the training time of machine learning models as the computing scale increases. To address this challenge, we propose a novel algorithm called Grouped Sparse AllReduce based on the 2D-Torus topology (2D-TGSA), which enables constant transmission traffic that does not change with the number of workers. Our experimental results demonstrate that 2D-TGSA outperforms several benchmark algorithms in terms of synchronization efficiency. Moreover, we integrate the general form consistent ADMM with 2D-TGSA to develop a distributed algorithm (2D-TGSA-ADMM) that exhibits excellent scalability and can effectively handle large-scale distributed optimization problems. Furthermore, we enhance 2D-TGSA-ADMM by adopting the resilient adaptive penalty parameter approach, resulting in a new algorithm called 2D-TGSA-TPADMM. Our experiments on training the logistic regression model with ℓ1-norm on the Tianhe-2 supercomputing platform demonstrate that our proposed algorithm can significantly reduce the synchronization time and training time compared to state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.