Abstract

A largely inactive derivative of the catalytic subunit of Escherichia coli aspartate transcarbamoylase containing trinitrophenyl groups on lysine 83 and 84 was used to study communication between polypeptide chains in the holoenzyme and the isolated catalytic trimers. Addition of native regulatory dimers to the derivative yielded a holoenzyme-like complex of low activity which exhibited sigmoidal kinetics and was inhibited by CTP and activated by ATP. The binding of CTP and ATP to the regulatory subunits caused significant and opposite changes in the absorption spectrum resulting from changes in the environment of the sensitive chromophores at the active sites. In allosteric hybrid molecules containing one native and one trinitrophenylated catalytic subunit, along with native regulatory subunits, the binding of a bisubstrate analog, N-(phosphonacetyl)-L-aspartate, to the native catalytic subunit resulted in a perturbation of the spectrum of the chromophore on the unliganded modified chains. Thus the conformational changes associated with the allosteric transition responsible for both heterotropic and homotropic effects are propagated from the sites of ligand binding to the active sites of unliganded distant chains. In addition to the communication from regulatory chains to catalytic chains and the cross-talk from one catalytic subunit to the other, communication between individual catalytic chains in isolated trimers was also demonstrated. By constructing hybrid trimers containing one trinitrophenylated chain and two native chains, we could detect a change in the environment of the chromophore upon the binding of the bisubstrate analog to the native chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.