Abstract

The delivery of an intensity modulated radiation field with a dynamic multileaf collimator (MLC) requires precise correlation between MLC positions and cumulative monitor units (MUs). The purpose of this study is to investigate the precision of this correlation as a function of delivered MUs and dose rate. A semi-Gaussian shaped intensity profile and a simple geometric intensity pattern consisting of four square segments were designed to deliver a total of 1, 4, 16, 64, and 100 MUs at three different dose rates of 100, 400, and 600 MU/min. The semi-Gaussian intensity pattern was delivered using both sliding window and step and shoot techniques. The dose profiles of this intensity pattern were measured with films. The four square intensity pattern was delivered using step and shoot and conventional delivery techniques for comparison. Because of geometrical symmetry, the dose to each segment in this intensity pattern is expected to be the same when the same MU is assigned to each segment. An ionization chamber was used to measure the dose in the center of each of the four square segments. For the semi-Gaussian shaped profile, significant artifacts were observed when the profile was delivered with small MUs and/or at a high dose rate. For the four square intensity pattern, the dose measured in each segment presented a large variation when delivered with small MUs and a high dose rate. The variation increases as the MU/segment decreases and as the dose rate increases. These MU and dose rate dependencies were not observed when the intensity pattern was delivered using a conventional delivery technique. The observed distortion of the semi-Gaussian profile and dose variations among the segments of the four square intensity pattern are explained by considering the sampling rate and the communication time lag between the control systems. Finally, clinical significance is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.