Abstract
A new, more flexible definition of fuzzy Voronoi cells is proposed as a computationally efficient alternative to Bader's Quantum Theory of Atoms in Molecules (QTAIM) partitioning of the physical space for large-scale routine calculations. The new fuzzy scheme provides atomic charges, delocalization indices, and molecular energy components very close to those obtained using QTAIM. The method is flexible enough to either ignore the presence of spurious non-nuclear attractors or to readily incorporate them by introducing additional fuzzy Voronoi cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.