Abstract
Effective prediction and surveillance of communicable diseases are vital for public health management. This study leveraged machine learning algorithms to predict disease occurrences in the Province of Marinduque, focusing on Hand Foot Mouth Disease, Dengue, Typhoid, Influenza, Chikungunya, Rabies, Measles, Meningitis, Hepatitis, and Acute Bloody Diarrhea using data from 2015 to 2019. The monthly morbidity rate served as the criterion variable. Machine learning models, including Random Forest, Logistic Regression, SVM, and k-Nearest Neighbors, were employed. Material and methods encompassed data collection, preprocessing, feature selection, and model evaluation. Results revealed Random Forest as the most accurate algorithm, with implications for proactive disease management and resource allocation. This research enhances disease prediction methodologies and contributes to public health surveillance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE - ENGINEERING AND TECHNOLOGY
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.