Abstract
Abstract: We propose CommTrust for trust evaluation by mining feedback comments. Our main contributions include: 1) we propose a multidimensional trust model for computing reputation scores from user feedback comments; and 2) we propose an algorithm for mining feedback comments for dimension ratings and weights, combining techniques of natural language processing, opinion mining, and topic modeling. Extensive experiments on eBay and Amazon data demonstrate that CommTrust can effectively address the “all good reputation” issue and rank sellers effectively. To the best of our knowledge, our research is the first piece of work on trust evaluation by mining feedback comments.. An algorithm is proposed to mine feedback comments for dimension weights, ratings, which combine methods of topic modeling, natural language processing and opinion mining. This model has been experimenting with the dataset which includes various user level feedback comments that are obtained on various products. It also finds various multi-dimensional features and their ratings using Gibbs-sampling that generates various categories for feedback and assigns trust score for each dimension under each product level. Keywords: E-Commerce, Feedback mining, Trust score, Topic modeling, Reputation-based trust score
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Research in Applied Science and Engineering Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.