Abstract

Zero-shot stance detection (ZSSD) aims to identify the stance for a diverse range of topics with limited or no training data. It is more suitable for evolving real-world topics that are constantly evolving. However, ZSSD faces major challenges which are the lack of unseen target information and the inability to generalize training information to unseen targets effectively. To overcome these challenges, we propose a commonsense-based adversarial learning framework that comprises a commonsense graph encoder and a feature separation adversarial network. Specifically, our approach utilizes an external commonsense graph encoder to learn unseen target information. Moreover, we design a novel feature separation adversarial network to learn target-invariant and target-specific features, which enhances the model’s ability to reason beyond the seen targets. Experiments on two benchmark datasets show that our proposed framework achieves state-of-the-art performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.