Abstract

A murine model infection with the human coxsackievirus B3 (CB3) has been shown to change uptake and tissue distribution of several environmental pollutants, in some cases followed by an aggravated disease. In this study, the model was tested for polybrominated diphenyl ethers (PBDEs), which we know are absorbed from the gastro-intestinal tract and further distributed throughout the body. On day 0, female Balb/c mice were infected with CB3; on day 1 of the infection, they were dosed orally with approximately 200 μg/kg body weight (bw) (ca. 0.52 μCi) of 14C-labelled 2,2′,4,4′,5-pentabromodiphenyl ether ( 14C-BDE-99); and on day 3 of the infection, they were sacrificed for studies of 14C-BDE-99 distribution. In comparison with control values, 14C-BDE-99 concentrations were altered in the liver (186%, p < 0.05), lungs (47%, p < 0.05) and pancreas (51%, p < 0.05), but no change was seen in the blood, brain, heart, spleen, thymus or kidneys. Moreover, on day 3, plasma thyroxine (T 4) levels (33%, p < 0.001), as well as ethoxyresorufin- O-dealkylase (EROD) (17%, p < 0.001) and pentoxyresorufin O-dealkylase (PROD) (31%, p < 0.001) activities were much lower in infected compared to non-infected control mice. It is suggested that the change in tissue distribution of 14C-BDE-99 as a result of the infection may be caused by an infection-induced specific change in the hepatic enzyme activities affecting this PBDE congener. The mechanism for virally induced T 4 changes remains, however, unclear. The presented infection-induced alteration in distribution, which is different from other environmental pollutants (e.g., dioxin, acrylamide and cadmium), may have consequences for PBDEs toxicity, especially in relation to microsomal enzyme and thyroid hormone activities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.