Abstract

Ischemia and reperfusion remain inseparable elements of numerous medical procedures such as by-pass surgery, organ transplantation or other cardiology and intervention radiology. The contraction of the smooth muscle of the vessel is considered to be one of the basic components leading to impaired perfusion, an increase in the oxygen deficit of the endothelium of the vessel, and subsequently also to tissues vascularized by the vessel.Main aim of this study was to evaluate the effect of ischemia and reperfusion on vascular smooth muscle cells stimulated pharmacologically with mastoparan-7 (direct G-protein activator) in comparison to stimulation of G-protein coupled receptor agonist - phenylephrine, and direct calcium channel activator - Bay K8644.Experiments were performed on isolated and perfused tail artery of Wistar rats. Contraction force in our model was measured by increased level of perfusion pressure with a constant flow.Concentration-response curves obtained for phenylephrine, mastoparan-7 and Bay K8644 presented a sigmoidal relation. Ischemia induced hyporreactivity of vessels, whereas during reperfusion the significant time related hyperreactivity for phenylephrine and mastoparan-7 only but not for Bay K8644. These reactions were secondary to the modulation of calcium influx from intra- and extracellular calcium stores.Results of our experiments suggest that mastoparan-7 significantly induces contraction of vascular smooth muscle cells not only for controls but in the presence of ischemia and reperfusion too. Potential therapeutic applications of the observed reactions are important. They may include regenerative processes within the nervous system, studies on the improvement of blood flow within the microcirculation, or antimicrobial activity. Modulation of the G protein-phospholipase C response may also be an interesting point of action of future drugs modifying the response to stimulation during ischemia in particular, such activities could take place during the transport of organs for transplantation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call