Abstract

With its hallmarks of unregulated cell proliferation and compromised differentiation, cancer represents a derangement of normal tissue homeostasis. A common set of pathways are activated in the transformed state, through either mutation or altered epigenetic regulation, and both heritable effects sustain the tumor. Classical views of cancer have invoked tissue dedifferentiation in the oncogenic process, whereas modern views embodied in the cancer stem cell hypothesis hold that cancer emerges from primitive tissue stem cells or specific progenitor populations that through mutations assume the self-renewal properties of stem cells. Recently, somatic tissues have been reprogrammed to a pluripotent state resembling embryonic stem (ES) cells by ectopic expression of a cocktail of transcription factors. The factors that drive reprogramming are oncogenes or have been linked to cellular transformation, suggesting that tumorigenesis and somatic cell reprogramming might indeed share common mechanisms of dedifferentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.