Abstract

Abstract This paper considers a linear multi-state sliding window system (SWS) that consists of n linearly ordered multi-state elements. Each element can have different states: from complete failure to perfect functioning. A performance rate is associated with each state. The system fails if the sum of the performance rates of any r consecutive elements is lower than demand w . Different groups of elements (common supply groups (CSGs)) share some common resources. Failures in the resource supply system (common supply failures (CSF)) result in the simultaneous outage of several elements belonging to corresponding groups. Different groups of elements are affected by different CSF. This paper presents an algorithm for evaluating the reliability of SWS that is the subject of CSF. It also introduces the CSG reliability importance measure and suggests an algorithm for its estimation. Further, it formulates a problem of optimal element distribution among CSGs and presents a method for solving it. An illustrative example shows the application of the suggested algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.