Abstract

Statistical properties of dynamically triangulated manifolds (DT mfds) in terms of the geodesic distance are studied numerically. The string susceptibility exponents for the boundary surfaces in three-dimensional DT mfds are measured numerically. For spherical boundary surfaces, we obtain a result consistent with the case of a two-dimensional spherical DT surface described by the matrix model. This gives a correct method to reconstruct two-dimensional random surfaces from three-dimensional DT mfds. Furthermore, a scaling property of the volume distribution of minimum neck baby universes is investigated numerically in the case of three and four dimensions, and we obtain a common scaling structure near to the critical points belonging to the strong coupling phase in both dimensions. We have evidence for the existence of a common fractal structure in three- and four-dimensional simplicial quantum gravity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.