Abstract

The secondary structures of human hY1 and hY5 RNAs were determined using both chemical modification techniques and enzymatic structure probing. The results indicate that both for hY1 and for hY5 RNA the secondary structure largely corresponds to the structure predicted by sequence alignment and computerized energy-minimization. However, some important deviations were observed. In the case of hY1 RNA, two regions forming a predicted helix appeared to be single-stranded. Furthermore, the pyrimidine-rich region of hY1 RNA appeared to be very resistant to reagents under native conditions, although it was accessible to chemical reagents under semi-denaturing conditions. This may point to yet unidentified tertiary interactions for this region of hY1 RNA. In the case of hY5 RNA, two neighbouring internal loops in the predicted structure appeared to form one large internal loop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.