Abstract

Common scab (CS) caused by pathogenic Streptomyces spp. plays a decisive role in the qualitative and quantitative production of potatoes worldwide. Although the CS pathogen is present in Assam's soil, disease signs and symptoms are less obvious in the landrace Rongpuria potatoes that indicate an interesting interaction between the plant and the geocaulosphere microbial population. Toward this, a comparative metagenomics study was performed to elucidate the geocaulosphere microbiome assemblages and functions of low CS-severe (LSG) and moderately severe (MSG) potato plants. Alpha diversity indices showed that CS occurrence modulated microbiome composition and decreased overall microbial abundances. Functional analysis involving cluster of orthologous groups (COG) too confirmed reduced microbial metabolism under disease incidence. The top-three most dominant genera were Pseudomonas (relative abundance: 2.79% in LSG; 12.31% in MSG), Streptomyces (2.55% in LSG; 5.28% in MSG), and Pantoea (2.30% in LSG; 3.51% in MSG). As shown by the high Pielou's J evenness index, the potato geocaulosphere core microbiome was adaptive and resilient to CS infection. The plant growth-promoting traits and potential antagonistic activity of major taxa (Pseudomonads, non-pathogenic Streptomyces spp., and others) against the CS pathogen, i.e., Streptomyces scabiei, point toward selective microbial recruitment and colonization strategy by the plants to its own advantage. KEGG Orthology analysis showed that the CS infection resulted in high abundances of ATP-binding cassette transporters and a two-component system, ubiquitous to the transportation and regulation of metabolites. As compared to the LSG metagenome, the MSG counterpart had a higher representation of important PGPTs related to 1-aminocyclopropane-1-carboxylate deaminase, IAA production, betaine utilization, and siderophore production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.