Abstract

<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ f_c(z) = z^2+c $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M2">\begin{document}$ c \in {\mathbb C} $\end{document}</tex-math></inline-formula>. We show there exists a uniform upper bound on the number of points in <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb P}^1( {\mathbb C}) $\end{document}</tex-math></inline-formula> that can be preperiodic for both <inline-formula><tex-math id="M4">\begin{document}$ f_{c_1} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ f_{c_2} $\end{document}</tex-math></inline-formula>, for any pair <inline-formula><tex-math id="M6">\begin{document}$ c_1\not = c_2 $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M7">\begin{document}$ {\mathbb C} $\end{document}</tex-math></inline-formula>. The proof combines arithmetic ingredients with complex-analytic: we estimate an adelic energy pairing when the parameters lie in <inline-formula><tex-math id="M8">\begin{document}$ \overline{\mathbb{Q}} $\end{document}</tex-math></inline-formula>, building on the quantitative arithmetic equidistribution theorem of Favre and Rivera-Letelier, and we use distortion theorems in complex analysis to control the size of the intersection of distinct Julia sets. The proofs are effective, and we provide explicit constants for each of the results.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call