Abstract

Cell death/survival following traumatic brain injury (TBI) may be a result of alterations in the intracellular ratio of death and survival factors. Bcl-2 family genes mediate both cell survival and the initiation of cell death. Using lysate RNase protection assays, mRNA expression of the anti-cell death genes Bcl-2 and Bcl-xL, and the pro-cell death gene Bax, was evaluated following experimental brain injuries in adult male Sprague-Dawley rats. Both the lateral fluid-percussion (LFP) and the lateral controlled cortical impact (LCI) models of TBI showed similar patterns of gene expression. Anti-cell death bcl-2 and bcl-xL mRNAs were attenuated early and tended to remain depressed for at least 3 days after injury in the cortex and hippocampus ipsilateral to injury. Pro-cell death bax mRNA was elevated in these areas, usually following the decrease in anti-cell death genes. These common patterns of gene expression suggest an important role for Bcl-2 genes in cell death and survival in the injured brain. Understanding the regulation of these genes may facilitate the development of new therapeutic strategies for a condition that currently has no proven pharmacologic treatments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.