Abstract

Anomalous increases of the ionization density at middle latitudes (positive ionospheric storms) and anomalous increases of the neutral gas density at low latitudes (the geomagnetic activity effect) are prominent features of upper atmospheric storms. The present study investigates the idea that both phenomena are caused by traveling atmospheric disturbances (TADs). According to theory, such TADs are generated during magnetic substorm activity and propagate with high velocity from polar to equatorial latitudes. To examine the above hypothesis, magnetic, ionospheric, and neutral atmospheric data are compared for five different disturbance events. These case studies demonstrate that (1) there is a good temporal correlation between magnetic substorm activity at high latitudes, daytime positive ionospheric storms at middle latitudes, and the geomagnetic activity effect at low latitudes; (2) the initial phase of positive ionospheric storms propagates with high velocity toward lower latitudes; (3) this velocity is roughly consistent with the time lag of the geomagnetic activity effect at low latitudes; (4) the ionospheric disturbance is a conjugate phenomenon of global extent; and (5) it cannot be explained as an electric field effect. In summary, our data are fully consistent with the idea that TADs are responsible for both positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call