Abstract

Major depressive disorder (MDD) is characterized by deficient reward functions in the brain. However, existing findings on functional alterations during reward anticipation, reward processing, and learning among MDD patients are inconsistent, and it was unclear whether a common reward system implicated in multiple reward functions is altered in MDD. Here we meta-analyzed 18 past studies that compared brain reward functions between adult MDD patients (N = 477, mean age = 26.50 years, female = 59.40%) and healthy controls (N = 506, mean age = 28.11 years, females = 55.58%), and particularly examined group differences across multiple reward functions. Jack-knife sensitivity and subgroup meta-analyses were conducted to test robustness of findings across patient comorbidity, task paradigm, and reward nature. Meta-regression analyses assessed the moderating effect of patient symptom severity and anhedonia scores. We found during reward anticipation, MDD patients showed lower activities in the lateral prefrontal-thalamus circuitry. During reward processing, patients displayed reduced activities in the right striatum and prefrontal cortex, but increased activities in the left temporal cortex. During reward learning, patients showed reduced activity in the lateral prefrontal-thalamic-striatal circuitry and the right parahippocampal-occipital circuitry but higher activities in bilateral cerebellum and the left visual cortex. MDD patients showed decreased activity in the right thalamus during both reward anticipation and learning, and in the right caudate during both reward processing and learning. Larger functional changes in MDD were observed among patients with more severe symptoms and higher anhedonia levels. The thalamic-striatal circuitry functional alterations could be the key neural mechanism underlying MDD patients overarching reward function deficiencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.