Abstract

The combination of five-level converters with selective harmonic elimination pulse-width modulation (SHEPWM) is a practical need in medium-voltage, high-power applications. However, how to suppress the common-mode voltage (CMV) in this case becomes a difficult problem. Although CMV suppression under high switching frequency (SF) modulations and three-level SHEPWM has been discussed in many studies, these methods are not applicable to five-level SHEPWM. This is partly because the zero-sequence voltage under SHEPWM is difficult to adjust and partly because the solution spaces of three- and five-level SHEPWM are completely different. Moreover, conventional CMV suppression in three-level SHEPWM must sacrifice the switching angles to control the zero-sequence voltage, which makes the equivalent SF increase. Therefore, in this article, we propose a novel CMV suppression method that effectively utilizes the multimode characteristics of five-level SHEPWM. Multimode characteristics refers to the output waveform containing different levels of jump patterns. Therefore, there are a large number of switching angle trajectories in five-level SHEPWM, which outputs the same fundamental voltage with different CMVs. The proposed method uses the special multimode characteristics to reduce the CMV without sacrificing the switching angles. Its effectiveness and feasibility are verified by experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call