Abstract
Biostatistics plays a pivotal role in developing, interpreting and drawing conclusions from clinical, biological and epidemiological data. However, the improper application of statistical methods can lead to erroneous conclusions and misinterpretations. This paper provides a comprehensive examination of the most frequent mistakes encountered in the biostatistical analysis process. We identified and elucidated 10 common errors in biostatistical analysis. These include using the wrong metric to describe data, misinterpreting P-values, misinterpreting the 95% confidence interval, misinterpreting the hazard ratio as an index of prognostic accuracy, ignoring the sample size calculation, misinterpreting analysis by strata in randomized clinical trials, confusing correlation and causation, misunderstanding confounders and mediators, inadequately codifying variables during the data collection, and bias arising when group membership is attributed on the basis of future exposure in retrospective studies. We discuss the implications of these errors and propose some practical strategies to mitigate their impact. By raising awareness of these pitfalls, this paper aims to enhance the rigor and reproducibility of biostatistical analyses, thereby fostering more robust and reliable biomedical research findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.