Abstract

A phylogenetic tree can reflect the evolutionary relationships between species or gene families, and they play a critical role in modern biological research. In this review, we summarize common methods for constructing phylogenetic trees, including distance methods, maximum parsimony, maximum likelihood, Bayesian inference, and tree-integration methods (supermatrix and supertree). Here we discuss the advantages, shortcomings, and applications of each method and offer relevant codes to construct phylogenetic trees from molecular data using packages and algorithms in R. This review aims to provide comprehensive guidance and reference for researchers seeking to construct phylogenetic trees while also promoting further development and innovation in this field. By offering a clear and concise overview of the different methods available, we hope to enable researchers to select the most appropriate approach for their specific research questions and datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.