Abstract
This paper proposes a family of novel flying capacitor transformerless inverters for single-phase photovoltaic (PV) systems. Each of the new topologies proposed is based on a flying capacitor principle and requires only four power switches and/or diodes, one capacitor, and a small filter at the output stage. A simple unipolar sinusoidal pulse width modulation technique is used to modulate the inverter to minimize the switching loss, output current ripple, and the filter requirements. In general, the main advantages of the new inverter topologies are: 1) the negative polarity of the PV is directly connected to the grid, and therefore, no leakage current; 2) reactive power compensation capability; and 3) the output ac voltage peak is equal to the input dc voltage (unlike neutral-point-clamped and derivative topologies, which requires twice the magnitude of the peak ac voltage). A complete description of the operating principle with modulation techniques, design guidelines, and comprehensive comparisons is presented to reveal the properties and limitations of each topology in detail. Finally, experimental results of 1-kVA prototypes are presented to prove the concept and theoretical analysis of the proposed inverter family for practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.