Abstract

Despite a well-ordered pyrochlore crystal structure and strong magnetic interactions between the Dy$^{3+}$ or Ho$^{3+}$ ions, no long range magnetic order has been detected in the pyrochlore titanates Ho$_2$Ti$_2$O$_7$ and Dy$_2$Ti$_2$O$_7$. To explore the actual magnetic phase formed by cooling these materials, we measure their magnetization dynamics using toroidal, boundary-free magnetization transport techniques. We find that the dynamical magnetic susceptibility of both compounds has the same distinctive phenomenology, that is indistinguishable in form from that of the dielectric permittivity of dipolar glass-forming liquids. Moreover, Ho$_2$Ti$_2$O$_7$ and Dy$_2$Ti$_2$O$_7$ both exhibit microscopic magnetic relaxation times that increase along the super-Arrhenius trajectories analogous to those observed in glass-forming dipolar liquids. Thus, upon cooling below about 2K, Dy$_2$Ti$_2$O$_7$ and Ho$_2$Ti$_2$O$_7$ both appear to enter the same magnetic state exhibiting the characteristics of a glass-forming spin-liquid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.